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We derive an approximate expression for the Gilbert damping coefficient �G of itinerant electron ferromag-
nets which is based on their description in terms of spin-density-functional theory �SDFT� and Kohn-Sham
quasiparticle orbitals. We argue for an expression in which the coupling of magnetization fluctuations to
particle-hole transitions is weighted by the spin-dependent part of the theory’s exchange-correlation potential,
a quantity which has large spatial variations on an atomic length scale. Our SDFT result for �G is closely
related to the previously proposed spin-torque correlation-function expression.
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I. INTRODUCTION

The Gilbert parameter �G characterizes the damping of
collective magnetization dynamics.1 The key role of �G in
current-driven2 and precessional3 magnetization reversals
has renewed interest in the microscopic physics of this
important material parameter. It is generally accepted that
in metals the damping of magnetization dynamics is
dominated3 by particle-hole pair excitation processes. The
main ideas which arise in the theory of Gilbert damping have
been in place for some time.4,5 It has however been difficult
to apply them to real materials with the precision required
for confident predictions which would allow theory to play a
larger role in designing materials with desired damping
strengths. Progress has recently been achieved in various di-
rections, both through studies6 of simple models for which
the damping can be evaluated exactly and through
analyses7–9 of transition-metal ferromagnets that are based
on realistic electronic structure calculations. Evaluation of
the torque-correlation formula8,9 for �G used in the later cal-
culations requires knowledge only of a ferromagnet’s mean-
field electronic structure and of its Bloch state lifetime,
which makes this approach practical.

Realistic ab initio theories normally employ spin-density-
functional theory10 which has a mean-field theory structure.
In this paper we use time-dependent spin-density-functional
theory11 to derive an explicit expression for the Gilbert
damping coefficient in terms of Kohn-Sham theory eigenval-
ues and eigenvectors. Our final result is essentially equiva-
lent to the torque-correlation formula5 for �G, but has the
advantages that its derivation is fully consistent with density-
functional theory, that it allows for a consistent microscopic
treatments of both dissipative and reactive coefficients in the
Landau-Liftshitz-Gilbert �LLG� equations and that it helps
establish relationships between different theoretical ap-
proaches to the microscopic theory of magnetization damp-
ing.

Our paper is organized as follows. In Sec. II we relate the
Gilbert damping parameter �G of a ferromagnet to the low-
frequency limit of its transverse-spin-response function.
Since ferromagnetism is due to electron-electron interac-
tions, theories of magnetism are always many-electron theo-
ries and it is necessary to evaluate the many-electron re-

sponse function. In time-dependent spin-density-functional
theory the transverse response function is calculated using a
time-dependent self-consistent-field calculation in which
quasiparticles respond both to external potentials and to
changes in the interaction-induced effective potential. In Sec.
III we use perturbation theory and time-dependent mean-
field theory to express the coefficients which appear in the
LLG equations in terms of the Kohn-Sham eigenstates and
eigenvalues of the ferromagnet’s ground state. These formal
expressions are valid for arbitrary spin-orbit coupling, arbi-
trary atomic length scale spin-dependent and scalar poten-
tials, and arbitrary disorder. By treating disorder approxi-
mately, in Sec. IV we derive and compare two commonly
used formulas for Gilbert damping. Finally, in Sec. V we
summarize our results.

This is the first of two papers related to damping of col-
lective magnetization dynamics in metallic ferromagnets.
The second paper will report on exact calculations for two
different toy-model systems, with and without intrinsic spin-
orbit interactions and with various spin-independent and
spin-dependent disorder models. These model calculations
shed light on the absolute and relative reliabilities of the two
different formulas for �G discussed in the present paper. Pa-
per II will additionally highlight the importance of higher
order diffusive particle-hole correlations in strongly spin-
orbit coupled systems such as �Ga,Mn�As.

II. MANY-BODY TRANSVERSE RESPONSE FUNCTION
AND THE GILBERT DAMPING PARAMETER

The Gilbert damping parameter �G appears in the
Landau-Liftshitz-Gilbert expression for the collective mag-
netization dynamics of a ferromagnet

��̂

�t
= �̂ � Heff − �G�̂ �

��̂

�t
. �1�

In Eq. �1� Heff is an effective magnetic field which we com-

ment on further below and �̂���x ,�y ,1− ��x
2+�y

2� /2� is
the direction of the magnetization.12 This equation describes
the slow dynamics of smooth magnetization textures and is
formally the first term in an expansion in time derivatives.
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The damping parameter �G can be measured by perform-
ing ferromagnetic resonance �FMR� experiments in which
the magnetization direction is driven weakly away from an
easy direction �which we take to be the ẑ direction�. To relate
this phenomenological expression formally to microscopic
theory we consider a system in which external magnetic
fields couple only13 to the electronic spin degree of freedom

and associate the magnetization direction �̂ with the direc-
tion of the total electron spin. For small deviations from the
easy direction, Eq. �1� reads

Heff,x = +
��̂y

�t
+ �G

��̂x

�t
,

Heff,y = −
��̂x

�t
+ �G

��̂y

�t
. �2�

The gyromagnetic ratio has been absorbed into the units of
the field Heff so that this quantity has energy units and we set
�=1 throughout. The corresponding formal linear-response
theory expression is an expansion of the long-wavelength
transverse total spin-response function to first order14 in fre-
quency �,

S0�̂� = �
�

���,�
st + ���,�� �Hext,�, �3�

where � ,�� �x ,y�, �	 i�t is the frequency, S0 is the total
spin of the ferromagnet, Hext is the external magnetic field,
and � is the transverse spin-spin response function

��,���� = i

0

	

dt exp�i�t���S��t�,S��0���

= �
n
 �
0�S��
n��
n�S��
0�

�n,0 − � − i�

+
�
0�S��
n��
n�S��
0�

�n,0 + � + i�
� , �4�

Here �
n� is an exact eigenstate of the many-body Hamil-
tonian and �n,0 is the excitation energy for state n. We use
this formal expression below to make some general com-
ments about the microscopic theory of �G. In Eq. �3� ��,�

st is
the static ��=0� limit of the response function and ��,�� is the
first derivative with respect to � evaluated at �=0. Notice
that we have chosen the normalization in which � is the total
spin response to a transverse field; � is therefore extensive.

The key step in obtaining the Landau-Liftshitz-Gilbert
form for the magnetization dynamics is to recognize that in
the static limit the transverse magnetization responds to an
external magnetic field by adjusting orientation to minimize
the total energy including the internal energy Eint and the
energy due to coupling with the external magnetic field

Eext = − S0�̂ · Hext. �5�

It follows that

��,�
st = S0

2 �2Eint

��̂� � �̂�

�−1

. �6�

We obtain a formal equation for Heff corresponding to Eq. �2�
by multiplying Eq. �3� on the left by ���,�

st �−1 and recognizing

Hint,� = −
1

S0
�
�

�2Eint

��̂� � �̂�

�̂� = −
1

S0

�Eint

��̂�

�7�

as the internal energy contribution to the effective magnetic
field Heff=Hint+Hext. With this identification Eq. �3� can be
written in the form

Heff,� = �
�

L�,��t�̂�, �8�

where

L�,� = − S0�i��st�−1����st�−1��,� = iS0����,�
−1 . �9�

According to the Landau-Liftshitz-Gilbert equation then
Lx,y =−Ly,x=1 and

Lx,x = Ly,y = �G. �10�

Explicit evaluation of the off-diagonal components of L will
in general yield very small deviation from the unit result
assumed by the Landau-Liftshitz-Gilbert formula. The devia-
tion reflects mainly the fact that the magnetization magnitude
varies slightly with orientation. We do not comment further
on this point because it is of little consequence. Similarly
Lx,x is not in general identical to Ly,y, although the difference
is rarely large or important when the magnetization is
aligned with a high-symmetry direction of a hexagonal or
cubic crystal.7 Equation �10� is the starting point we use later
to derive approximate expressions for �G.

In Eq. �9� ��,���� is the correlation function for an inter-
acting electron system with arbitrary disorder and arbitrary
spin-orbit coupling. In the absence of spin-orbit coupling,
but still with arbitrary spin-independent periodic and disor-
der potentials, the ground state of a ferromagnet is coupled
by the total spin-operator only to states in the same total spin
multiplet. In this case it follows from Eq. �4� that

��,�
st = 2�

n

Re��
0�S��
n��
n�S��
0��
�n,0

= ��,�
S0

H0
, �11�

where H0 is a static external field, which is necessary in the
absence of spin-orbit coupling to pin the magnetization to the
ẑ direction and splits the ferromagnet’s ground-state many-
body spin multiplet. Similarly

��,�� = 2i�
n

Im��
0�S��
n��
n�S��
0��
�n,0

2 = i�,�
S0

H0
2 ,

�12�

where x,x=y,y =0 and x,y =−y,x=1, yielding Lx,y =−Ly,x
=1 and Lx,x=Ly,y =0. Spin-orbit coupling is required for
magnetization damping.15
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III. SDF-STONER THEORY EXPRESSION FOR GILBERT
DAMPING

Approximate formulas for �G in metals are inevitably
based on a self-consistent mean-field theory �Stoner� descrip-
tion of the magnetic state. Our goal is to derive an approxi-
mate expression for �G when the adiabatic local spin-density
approximation10 is used for the exchange-correlation poten-
tial in spin-density-functional theory. The effective Hamil-
tonian which describes the Kohn-Sham quasiparticle dynam-
ics therefore has the form

HKS = HP − ��n�r��, �s��r�����̂�r�� · s� , �13�

where HP is the Kohn-Sham Hamiltonian of a paramagnetic
state in which �s��r����the local spin density� is set to zero, s� is
the spin-operator, and

��n,s� = −
d�nxc�n,s��

ds
�14�

is the magnitude of the spin-dependent part of the exchange-
correlation potential. In Eq. �14� xc�n ,s� is the exchange-
correlation energy per particle in a uniform electron gas with
density n and spin-density s. We assume that the ferromagnet
is described using some semirelativistic approximation to the
Dirac equation such as those commonly used16 to describe
magnetic anisotropy or x-ray magnetic circular dichroism,
even though these approximations are not strictly consistent
with spin-density-functional theory. Within this framework
electrons carry only a two-component spin-1/2 degree of
freedom and spin-orbit coupling terms are included in HP.
Since nxc�n ,s����n /2+s�4/3+ �n /2−s�4/3�, ��n ,s��n1/3 is
larger closer to atomic centers and far from spatially uniform
on atomic length scales.17 This property figures prominently
in the considerations explained below.

In spin-density-functional theory �SDFT� the transverse-
spin-response function is expressed in terms of Kohn-Sham
quasiparticle response to both external and induced magnetic
fields

s0�r�����r�� =
 dr��

V
��,�

QP �r�,r�� ��Hext,��r�� � + ��r�� ����r�� �� .

�15�

In Eq. �15� V is the system volume, s0�r�� is the magnitude of
the ground-state spin density, ��r�� is the magnitude of the
spin-dependent part of the ground-state exchange-correlation
potential, and

��,�
QP �r�,r�� � = �

i,j

f j − f i

�i,j − � − i�
�i�r��s��r��j��j�r�� �s��r�� �i� ,

�16�

where f i is the ground-state Kohn-Sham occupation factor
for eigenspinor �i� and �ij 	i− j is a Kohn-Sham eigen-
value difference. �QP�r� ,r��� has been normalized so that it
returns the spin-density rather than total spin. Like the
Landau-Liftshitz-Gilbert equation itself, Eq. �15� assumes
that only the direction of the magnetization, and not the mag-
nitudes of the charge and spin-densities, varies in the course

of smooth collective magnetization dynamics.18 This prop-
erty should hold accurately as long as magnetic anisotropies
and external fields are weak compared to �. We are able to
use this property to avoid solving the position-space integral
equation implied by Eq. �15�. Multiplying by ��r�� on both
sides and integrating over position we find19 that

S0�� = �
�

1

�̄
�̃�,�

QP ����� +
Hext,�

�̄
� , �17�

where we have taken advantage of the fact that in FMR

experiments Hext,� and �̂ are uniform. �̄ is a spin-density
weighted average of ��r��,

�̄ =

 dr���r��s0�r��


 dr�s0�r��
, �18�

and

�̃�,�
QP ��� = �

ij

f j − f i

�ij − � − i�
�j�s���r���i��i�s���r���j� �19�

is the transverse part of the quasiparticle exchange-
correlation effective-field response function, not the trans-
verse part of the quasiparticle spin-response function. In Eq.
�19�, �i�O�r���j�=�dr��i �r��O�r���r� � j� denotes a single-particle
matrix element. Solving Eq. �17� for the many-particle trans-

verse susceptibility �the ratio of S0�̂� to Hext,�� and inserting
the result in Eq. �9� yields

L�,� = iS0����,�
−1 = − S0�̄2�� Im��̃�,�

QP−1� . �20�

Our microscopic theory of the LLG damping parameter
helps explain the relationship between a variety of similar
but distinct formulas which appear in the literature in either
ab initio theory or model calculations. As we have explained,
�G is fundamentally related to the full many-body
transverse-spin-response function to smooth external mag-
netic fields. In SDFT and other theories with a similar mean-
field structure, this translates not into the transverse-spin-
response function of quasiparticles but instead into the
quasiparticle response function for changes in the orientation
of the spin-dependent part of the exchange-correlation poten-
tial. Spin-flip operators in this response function are there-
fore weighted by the local spin-splitting which varies consid-
erably within each unit cell of a magnetic metal. In our
formulation, as in some others7 both reactive and dissipative
terms in the LLG equation are understood in a consistent
fashion. In addition, as we discuss in greater detail later, our
approach treats the breathing Fermi-surface contribution to
damping5,7 and the interband spin-relaxation contribution on
the same footing. Using our formulation we are able below
to address the relationship between torque-correlation formu-
las for the magnetization damping and other spin-oriented
formulas which arise more naturally in Kubo response func-
tion theories for model systems.

Comparing Eqs. �7� and �15� we find that the internal
anisotropy field can also be expressed in terms of �̃QP,
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Hint,� = − �̄2S0�
�
�̃�,�

QP−1�� = 0� −
��,�

S0�̄
���. �21�

Equations �20� and �21� provide microscopic expressions for
all ingredients that appear in the LLG equations linearized
for small transverse excursions. It is generally assumed that
the damping coefficient �G is independent of orientation; if
so, the present derivation is sufficient. The anisotropy field at
large transverse excursions normally requires additional in-
formation about magnetic anisotropy. We remark that if the
Hamiltonian does not include a spin-dependent mean-field
dipole interaction term, as is usually the case, the above
quantity will return only the magnetocrystalline anisotropy
field. Since the magnetostatic contribution to anisotropy is
always well described by mean-field theory it can be added
separately.

We conclude this section by demonstrating that the
Stoner-theory equations proposed here recover the exact re-
sults mentioned at the end of Sec. II for the limit in which
spin-orbit coupling is neglected. We consider a SDFT ferro-
magnet with arbitrary scalar and spin-dependent effective
potentials. Since the spin-dependent part of the exchange-
correlation potential is then the only spin-dependent term in
the Hamiltonian it follows that

�HKS,s�� = − i�,���r��s� �22�

and hence that

�i�s���r���j� = − i�,��ij�i�s��j� . �23�

Inserting Eq. �23� in one of the matrix elements of Eq. �19�
yields for the no-spin-orbit-scattering case

�̃�,�
QP �� = 0� = ��,�S0�̄ . �24�

The internal magnetic field Hint,� is therefore identically zero
in the absence of spin-orbit coupling and only external mag-
netic fields will yield a finite collective precession frequency.
Inserting Eq. �23� in both matrix elements of Eq. �19� yields

�� Im��̃�,�
QP � = �,�S0. �25�

Using both Eqs. �24� and �25� to invert �̃QP we recover the
results proved previously for the no-spin-orbit case using a
many-body argument: Lx,y =−Ly,x=1 and Lx,x=Ly,y =0. The
Stoner-theory equations derived here allow spin-orbit inter-
actions, and hence magnetic anisotropy and Gilbert damping,
to be calculated consistently from the same quasiparticle re-
sponse function �̃QP.

IV. DISCUSSION

As long as magnetic anisotropy and external magnetic
fields are weak compared to the exchange-correlation split-
ting in the ferromagnet we can use Eq. �24� to approximate
�̃�,�

QP ��=0�. Using this approximation and assuming that
damping is isotropic we obtain the following explicit expres-
sion for temperature T→0:

�G = Lx,x = − S0�̄2�� Im��̃x,x
QP−1�

=
�

S0
�
ij

�� j − F���i − F��j�sx��r���i��i�sx��r���j�

=
�

S0
�
ij

�� j − F���i − F�

��j��HP,sy��i��i��HP,sy��j� . �26�

The second form for �G is equivalent to the first and follows
from the observation that for matrix elements between states
that have the same energy

�i��HKS,s���j� = − i�,��i���r��s��j� + �i��HP,s���j�

= 0 �for �ij = 0� . �27�

Equation �26� is valid for any scalar and any spin-dependent
potential. It is clear however that the numerical value of �G
in a metal is very sensitive to the degree of disorder in its
lattice. To see this we observe that for a perfect crystal the
Kohn-Sham eigenstates are Bloch states. Since the operator
��r��s� has the periodicity of the crystal its matrix elements
are nonzero only between states with the same Bloch wave
vector label k�. For the case of a perfect crystal then

�G =
�

s0



BZ

dk�

�2��3�
nn�

��k�n� − F���k�n − F�

��k�n��sx��r���k�n��k�n�sx��r���k�n��

=
�

s0



BZ

dk�

�2��3�
nn�

��k�n� − F���k�n − F�

��k�n���HP,sy��k�n��k�n��HP,sy��k�n�� , �28�

where nn� are band labels and s0 is the ground-state spin per
unit volume and the integral over k� is over the Brillouin zone
�BZ�.

Clearly �G diverges20 in a perfect crystal since
�k�n�sx��r���k�n� is generically nonzero. A theory of �G must
therefore always account for disorder in a crystal.21 The easi-
est way to account for disorder is to replace the ��k�n−F�
spectral function of a Bloch state by a broadened spectral
function evaluated at the Fermi energy Ak�n�F�. If disorder is
treated perturbatively this simple ansatz can be augmented22

by introducing impurity vertex corrections in Eq. �28�. Pro-
vided that the quasiparticle lifetime is computed via Fermi’s
golden rule, these vertex corrections restore Ward identities
and yield an exact treatment of disorder in the limit of dilute
impurities. Nevertheless, this approach is rarely practical
outside the realm of toy models because the sources of dis-
order are rarely known with sufficient precision.

Although appealing in its simplicity, the ��k�n−F�
→Ak�n�F� substitution is prone to ambiguity because it gives
rise to qualitatively different outcomes depending on
whether it is applied to the first or second line of Eq. �28�

ION GARATE AND ALLAN MACDONALD PHYSICAL REVIEW B 79, 064403 �2009�

064403-4



�G
�TC� =

�

s0



BZ

dk�

�2��3�
nn�

Ak�,n�F�Ak�,n��F��k�n���HP,sy��k�n�

��k�n��HP,sy��k�n�� ,

�G
�SF� =

�

s0



BZ

dk�

�2��3�
nn�

Ak�,n�F�Ak�,n��F��k�n��sx��r���k�n�

��k�n�sx��r���k�n�� . �29�

�G
�TC� is the torque-correlation �TC� formula used in realistic

electronic structure calculations8,9 and �G
�SF� is the spin-flip

�SF� formula used in certain toy-model calculations.23 The
discrepancy between TC and SF expressions stems from in-
terband �n�n�� contributions to damping, which may now
connect states with different band energies due to the disor-
der broadening of the spectral functions. Therefore,
�k�n��HKS,s���k�n�� no longer vanishes for n�n� and Eq. �27�
indicates that �G

�TC���G
�SF� only if the Gilbert damping is

dominated by intraband contributions and/or if the energy
difference between the states connected by interband transi-
tions is small compared to �. When �G

�TC���G
�SF�, it is a

priori unclear which approach is the most accurate. One ob-
vious flaw of the SF formula is that it produces a spurious
damping in absence of spin-orbit interactions; this unphysi-
cal contribution originates from interband transitions and
may be canceled out by adding the leading-order impurity
vertex correction.24 In contrast, �HP ,sy�=0 in absence of
spin-orbit interaction and hence the TC formula vanishes
identically, even without vertex corrections. From this analy-
sis, TC appears to have a pragmatic edge over SF in materi-

als with weak spin-orbit interaction. However, insofar as it
allows interband transitions that connect states with �i,j ��,
TC is not quantitatively reliable. Furthermore, it can be
shown22 that when the intrinsic spin-orbit coupling is signifi-
cant �e.g., in ferromagnetic semiconductors�, the advantage
of TC over SF �or vice versa� is marginal and impurity vertex
corrections play a significant role.

V. CONCLUSIONS

Using spin-density-functional theory we have derived a
Stoner model expression for the Gilbert damping coefficient
in itinerant ferromagnets. This expression accounts for
atomic scale variations of the exchange self energy, as well
as for arbitrary disorder and spin-orbit interaction. By treat-
ing disorder approximately, we have derived the spin-flip and
torque-correlation formulas previously used in toy-model
and ab initio calculations, respectively. We have traced the
discrepancy between these equations to the treatment of in-
terband transitions that connect states which are not close in
energy. A better treatment of disorder, which requires the
inclusion of impurity vertex corrections, will be the ultimate
judge on the relative reliability of either approach. When
damping is dominated by intraband transitions, a circum-
stance which we believe is common, the two formulas are
identical and both are likely to provide reliable estimates.
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